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We consider 3D Navier-Stokes equations.

∂tu+ (u · ∇)u+∇P −∆u = 0 and

div u = 0, t ∈ (0,∞), x ∈ R3
(1)

with L2 initial data

u0 ∈ L2(R3), div u0 = 0. (2)
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In this talk, we are looking for an estimate like
∇du ∈ Lp(t,x), weak-Lp(t,x) = weak-LptL

p
x.

For second derivatives ∇2u,

Parabolic regularization ∇2u ∈ L
5
4

P. Constantin’90 ∇2u ∈ L
4
3
−δ for δ > 0

P. Lions’96 ∇2u ∈ weak-L
4
3 (or L

4
3
,∞)

assuming that ∇u0 is a bounded measure.
(Let f and v0 be a bounded measure. Let v ∈ L2

(t,x) be a solution

of vt −∆v = f . Then ∇v ∈ weak-L
4
3 )

For general order derivatives ∇du, integer d ≥ 1,

A. Vasseur’09 ∇du ∈ L
4
d+1
−δ

loc for δ > 0
as long as u is smooth.
The estimate depends only on ‖u0‖L2(R3).
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For second derivatives ∇2u,

P. Constantin’90 ∇2u ∈ L
4
3
−δ for δ > 0

P. Lions’96(a book) ∇2u ∈ weak-L
4
3 (or L

4
3
,∞)

For general order derivatives ∇du, integer d ≥ 1,

A. Vasseur’09 ∇du ∈ L
4
d+1
−δ

loc for δ > 0
as long as u is smooth.

In this talk, we prove

C., A. Vasseur’11 ∇αu ∈ weak-L
4

α+1

loc (or L
4

α+1
,∞)

for real 1 < α < 3 and for weak solution u.
(If u is smooth, then α ≥ 3 also holds.)
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for real 1 < α < 3 and for weak solution u.
(If u is smooth, then α ≥ 3 also holds.)

Few remarks.

For any real α ≥ 1, we define ∇α := (−∆)
β
2∇d for d ≥ 1 integer

and 0 < β < 2 real where α = d+ β.

Let p := 4
α+1 . Then, for any t0 > 0 and any α ≥ 1,

‖∇αu‖p
Lp,∞t Lp,∞x [(t0,T )×K]

≤ Cα · (‖∇u‖2L2([(0,T )×R3)] +
LR3 (K)

t0
).

4
α+1 is optimal and weak space is necessary in our approach.

We use a blow up type technique.

For local study, De Giorgi-type argument will be used

For weak solutions, we need to handle nonlocality of the convective
velocity.

For fracional derivatives, we encounter nonlocality of pressure.
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Our main theorem(C., A. Vasseur’11) is the following.

Theorem

There exist universal constants Cd,α which depend only on integer d ≥ 1 and real α ∈ [0, 2) with the following
two properties (I) and (II):

(I) Suppose that we have a smooth solution u of (1) on (0, T )× R3 for some 0 < T ≤ ∞ with some initial
data (2). Then it satisfies

‖(−∆)
α
2 ∇du‖Lp,∞(t0,T ;Lp,∞(K)) ≤ Cd,α

(
‖u0‖

2
L2(R3)

+
|K|
t0

) 1
p

for any t0 ∈ (0, T ), any integer d ≥ 1, any α ∈ [0, 2) and any bounded open subset K of R3, where

p = 4
d+α+1

and | · | = the Lebesgue measure in R3.

(II) For any initial data (2), we can construct a suitable weak solution u of (1) on (0,∞)× R3 such that

(−∆)
α
2 ∇du is locally integrable in (0,∞)× R3 for d = 1, 2 and for α ∈ [0, 2) with (d + α) < 3.

Moreover, the estimate (1) holds with T =∞ under the same setting of the above part (I) as long as
(d + α) < 3.
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The origin of p = 4/(α+ 1) for ∇αu ∈ weak-Lp, α ≥ 1.

ε-scaling : uε(t, x) = εu(ε2t, εx)

We want to use full power of the scaling factor 1
ε of |∇u|2 :˜

Q1

|∇uε|2dxdt = 1
ε

˜
Qε

|∇u|2dxdt

|∇du|p has the same factor 1
ε :˜

Q1

|∇duε|pdxdt = 1
ε

˜
Qε

|∇du|pdxdt

p = 4/(α+ 1) is optimal if we use only |∇u|2 ∈ L1
(t,x)
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Why weak-Lp not just Lp?

Definition of weak-Lp space: For 0 < p <∞.

weak-Lp = {f measurable | supα>0

(
αp · L[{|f | > α}]

)
<∞}

Chebyshev : L[{|f | > α}] ≤
´
|f | dx
α

We want to use a blow-up type theorem :˜
Q1(t,x)

Fu,P (s, y) dyds ≤ δ ⇒ |u(t, x)| ≤ C

If Fu,P ∈ L1
(t,x), then we get

L[{|u| > C}] ≤ L[{
˜

Q1(t,x)

Fu,P (s, y) dyds > δ} ≤ 1
δL[Q1]‖Fu,P ‖L1

With ε-sclaing, we expect
L[{|u| > C/ε}] ≤ L[{ 1ε

˜
Qε(t,x)

Fu,P (s, y) dyds > δ} ≤ 1
δεε

5‖Fu,P ‖L1

weak-Lp is natural.
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Examples of blow-type theorems:˜
Q1(t,x)

Fu,P (s, y) dyds ≤ δ ⇒ |u(t, x)| ≤ C

L. Caffarelli, R. Kohn and L. Nirenberg’82 proved two local
regularity theorems. The first theorem says that (version of
F.Lin’98)

If
˜
Q1

(|u|3 + |P | 32 ) dxdt ≤ δ, then |u| ≤ C in Q 1
2

.

Here is another version due to Vasseur’07

Let p > 1.
If ‖u‖L∞

t L
2
x(Q0) + ‖∇u‖L2

tL
2
x(Q0) + ‖P‖LptL1

x(Q0) ≤ δp,
then |u| ≤ C in Q 1

2
.

We improve it for p = 1 by adopting a new pressure decomposition,

which will be used to get the limit case : weak-Lp instead of Lp−ε.
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Here is the second theorem of L. Caffarelli, R. Kohn and L.
Nirenberg’82.

If lim sup
ε→0

1
ε

˜
Qε

|∇u|2 dxdt ≤ δ,

then u is regular at (0, 0).
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ε→0
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ε

˜
Qε

|∇u|2 dxdt ≤ δ,

then u is regular at (0, 0).

It is not quantitative, but qualitative.

Can we make it quantitative?
More generally, we seek the following type of theorem :

(???) There exists a (pivot) function
Fu,P (·, ·) ∈ L1((0,∞)× R3) such that
(I) Fu,P has same scaling factor 1

ε like that of |∇u|2 :˜
Q1

Fuε,Pε dxdt = 1
ε

˜
Qε

Fu,P dxdt and

(II)If
˜
Q1

Fu,P dxdt ≤ δ, then |u| ≤ C in Q 1
2

.
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CKN theorem and its quantitative variation

Here is the second theorem of L. Caffarelli, R. Kohn and L.
Nirenberg’82.

If lim sup
ε→0

1
ε

˜
Qε

|∇u|2 dxdt ≤ δ,

then u is regular at (0, 0).

It is not quantitative, but qualitative.

Can we make it quantitative?
More generally, we seek the following type of theorem :

(???) There exists a (pivot) function
Fu,P (·, ·) ∈ L1((0,∞)× R3) such that

(I) Fu,P has same scaling factor 1
ε like that of |∇u|2 :˜

Q1

Fuε,Pε dxdt = 1
ε

˜
Qε

Fu,P dxdt and

(II)If
˜
Q1

Fu,P dxdt ≤ δ, then |u| ≤ C in Q 1
2

.
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Introduction and the main result
Local to global

Local study for smooth solutions
Nonlocality : weak solutions

More nonlocality : fractional derivatives of weak solutions

Why p = 4/(d+1) and why weak-Lp with∇du ∈ weak-Lp?
CKN theorem and its quantitative variation

We achieve a quantitative theorem following a flow

Theorem

Let 0 < ε2 < t. Then there exist a function Fu,P (·, ·) ∈ L1((0,∞)× R3)

and a flow X
(ε,t,x)
u (·) depending on (ε, t, x) such that

(I) Fu,P has same scaling factor 1
ε like that of |∇u|2 and

(II) If 1
ε

˜
Qε(t,x)

Fu,P (s, y +X
(ε,t,x)
u (s)) dyds ≤ δ,

then |∇αu| ≤ Cα/ε(α+1) in Q ε
2
(t, x) for real α ≥ 1.

e.g. for smooth u, we take Fu,P = |∇u|2 + |∇2P |.

´ t
0

´
R3 Fu,P (s, y +X

(ε,t,x)
u (s))dsdy =

´ t
0

´
R3 Fu,P (s, y)dsdy <∞

due to incompressibility of X.
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1 Introduction and the main result
Navier-Stokes and previous estimates about higher derivatives

Our main result : ∇αu ∈ weak-L
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loc
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Why p = 4/(d+ 1) and why weak-Lp with ∇du ∈ weak-Lp?
CKN theorem and its quantitative variation

3 Local study for smooth solutions
Converting into a problem with a right parabolic cylinder

4 Nonlocality : weak solutions
We need a smooth approximation scheme.
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Introduction and the main result
Local to global

Local study for smooth solutions
Nonlocality : weak solutions

More nonlocality : fractional derivatives of weak solutions

Converting into a problem with a right parabolic cylinder

To prove the following:
1
ε

˜
Qε(t,x)

Fu,P (s, y +X
(ε,t,x)
u (s)) dyds ≤ δ ⇒ |∇du| ≤ Cd/ε(d+1) in Q ε

2
(t, x) for integer d ≥ 1,

we reformulate the problem via

translation

{
v1(s, y) = u(t+ s, x+ y)

Q1(s, y) = P (t+ s, x+ y),

ε-scaling

{
v2(s, y) = εv1(ε

2s, εy)

Q2(s, y) = ε2Q1(ε
2s, εy)

(cont’d)
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Introduction and the main result
Local to global

Local study for smooth solutions
Nonlocality : weak solutions

More nonlocality : fractional derivatives of weak solutions

Converting into a problem with a right parabolic cylinder

translation, ε-scaling,

and Galilean invariance

{
v3(s, y) = v2(s, y +Xv2(s))− Ẋv2(s)

Q3(s, y) = Q2(s, y) + yẌv2(s)

where

{
Ẋv2(s) = (v2 ∗ φ)(s,Xv2(s))

Xv2(0) = 0.
. Note, v3 is mean zero w.r.t. φ :
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Local to global

Local study for smooth solutions
Nonlocality : weak solutions

More nonlocality : fractional derivatives of weak solutions

Converting into a problem with a right parabolic cylinder

To prove the following:
1
ε

˜
Qε(t,x)

Fu,P (s, y +X
(ε,t,x)
u (s)) dyds ≤ δ ⇒ |∇du| ≤ Cd/ε(d+1) in Q ε

2
(t, x) for integer d ≥ 1,

we reformulate the problem via
translation, ε-scaling, and Galilean invariance

Hence, it is enough to show that
if (v,Q) is a solution with mean-zero

´
R3 v(x)φ(x)dx = 0

and if
˜
Q1

Fv,Q(s, y) dyds ≤ δ,

then |∇dv| ≤ Cd in Q 1
2

for integer d ≥ 0.
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Nonlocality : weak solutions

More nonlocality : fractional derivatives of weak solutions

Converting into a problem with a right parabolic cylinder

Hence, it is enough to show that
if (v,Q) is a solution with mean-zero

´
R3 v(x)φ(x)dx = 0

and if
˜
Q1

Fv,Q(s, y) dyds ≤ δ,

then |∇dv| ≤ Cd in Q 1
2

for integer d ≥ 0.

Thanks to mean-zero property, we can control ‖v‖L∞L2(Q2/3)

and ‖Q‖L∞L1(Q2/3)
so small that we can apply the local

regularity theorem
(p = 1 variation of A. Vasseur’07), which can be proved via
De Giorgi argument:

If ‖u‖L∞
t L

2
x(Q0) + ‖∇u‖L2

tL
2
x(Q0) + ‖P‖L1

tL
1
x(Q0) ≤ δ,

then |∇du| ≤ Cd in Q 1
2

for integer d ≥ 0.

It finishes the proof for the case u:smooth.
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Introduction and the main result
Local to global

Local study for smooth solutions
Nonlocality : weak solutions

More nonlocality : fractional derivatives of weak solutions

We need a smooth approximation scheme.
Difficulities from convective velocity

Let u be a weak solution of (N-S).

We can not apply our method directly to ∇du especially for d > 2
because

our argument is based on the following set inclusion:

{1

ε

¨

Qε(t,x)

Fu,p(s,X
(ε,t,x)
u (s) dyds ≤ δ} ⊂ {|∇du| ≤ C

εd+1
}

which implies

L[{|∇du| > C

εd+1
}] ≤ L[{1

ε

¨

Qε(t,x)

Fu,p(s,X
(ε,t,x)
u (s) dyds > δ}]

This argument requires measurability of ∇du,

which we do not know if d > 2.
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Introduction and the main result
Local to global

Local study for smooth solutions
Nonlocality : weak solutions

More nonlocality : fractional derivatives of weak solutions

We need a smooth approximation scheme.
Difficulities from convective velocity

Instead we consider an approximation scheme.

J. Leray’34: for integer n ≥ 1,

∂tu+ ([u ∗ φ(1/n)] · ∇)u+∇P −∆u = 0 and

div u = 0,
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We need a smooth approximation scheme.
Difficulities from convective velocity

Instead we consider an approximation scheme.

J. Leray’34: for integer n ≥ 1,

∂tu+ ( [u ∗ φ(1/n)]︸ ︷︷ ︸
wu=convective velocity

·∇)u+∇P −∆u = 0 and

div u = 0,

Now u ∈ C∞.
To control wu := u ∗ φ(1/n) on B(ε), we need u on B(ε+ 1

n ).
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Introduction and the main result
Local to global

Local study for smooth solutions
Nonlocality : weak solutions

More nonlocality : fractional derivatives of weak solutions

We need a smooth approximation scheme.
Difficulities from convective velocity

Let (u, P ) satisfy ∂tu+ ([u ∗ φ(1/n)] · ∇)u+∇P −∆u = 0.

Apply ε-scaling

{
v(s, y) = εu(ε2s, εy)

Q(s, y) = ε2P (ε2s, εy)
. Then (v,Q) satisfies

not ∂tv + ([v ∗ φ(1/n)] · ∇)v +∇Q−∆v = 0,

but ∂tv + ([v ∗ φ( 1
(nε)

)] · ∇)v +∇Q−∆v = 0..
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For local study (De Giorgi type), we need a uniform local
estimate of the scaled convective velocity wv := [v ∗ φ( 1

(nε)
)].

To control wv := v ∗ φ1/(nε) on B(1), we need v on B(1 + 1
nε ).
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The scaled convective velocity depends on v too much nonlocally as
ε goes to zero.
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.

While the scaled velocity v is mean-zerp, the scaled convective
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(nε)
)] is not mean-zero.

We need to find a different flow.
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Difficulity from pressure

Outline

1 Introduction and the main result
Navier-Stokes and previous estimates about higher derivatives

Our main result : ∇αu ∈ weak-L
4/(α+1)
loc

2 Local to global
Why p = 4/(d+ 1) and why weak-Lp with ∇du ∈ weak-Lp?
CKN theorem and its quantitative variation

3 Local study for smooth solutions
Converting into a problem with a right parabolic cylinder

4 Nonlocality : weak solutions
We need a smooth approximation scheme.
Difficulities from convective velocity

5 More nonlocality : fractional derivatives of weak solutions
Difficulity from pressure
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Local study for smooth solutions
Nonlocality : weak solutions

More nonlocality : fractional derivatives of weak solutions

Difficulity from pressure

The fractional Laplacian (−∆)
β
2 for 0 < β < 2:[

(−∆)
β
2 f
]
(x) = P.V.

ˆ
R3

f(t, x)− f(t, y)

|x− y|3+β
dy

Assume |∇du| ≤ C and |∇d+1u| ≤ C in Q1

Due to nonlocality of (−∆)
β
2 ,

we cannot derive directly |∇αu| ≤ C in Q1

for d < α < d+ 1.

To get |∇αu| ≤ C, we need boundedness of

g(t) :=
´
|y|≥ 1

2

∇du(t,y)
|y|3+β dy,

To get g ∈ L∞, we need to use structure of the equation.

As a result , non-local information of ∇2P is required.
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Difficulity from pressure

We want to capture non-local information of ∇2P .

Due to ∇2P ∈ L1
tL

1
x, Maximal function supδ>0

(
φδ ∗ |∇2P |

)
of

∇2P lies not in L1 but in weak-L1.

We use ∇2P ∈ H(Hardy space) which implies
supδ>0 |φδ ∗ ∇2P | ∈ L1.
(R. Coifman, P. Lions, Y. Meyer, and S. Semmes)

It plays a similar role of Maximal function.
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Thank you.
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